Abstract

Understanding the electrochemical properties of rare earth elements is important for developing efficient techniques for separating rare earth elements from actinides recovered during the electrodeposition process. In this study the cyclic voltammetry for lanthanum in molten LiClKCl eutectic was recorded at 773 K for different scan rates and different bulk concentrations. A model accounting for mass transport, kinetics and adsorption was applied to analyze the experimental data via performing a nonlinear least squares fit. The results of the simulation are compared against the results of a conventional analysis of the cyclic voltammograms and against the existing literature. At the scan rates used, the reduction/oxidation process is quasi-reversible. The values of diffusivities derived from simulation were larger than the ones derived commonly using equations for diffusion-limited processes. However, those equations were derived based on an assumption of reversibility. This simulation-based approach may provide a more accurate option for analyzing systems that do not exhibit reversibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call