Abstract
The performance of parameter estimates and standard errors in estimating F. Samejima's graded response model was examined across 324 conditions. Full information maximum likelihood (FIML) was compared with a 3-stage estimator for categorical item factor analysis (CIFA) when the unweighted least squares method was used in CIFA's third stage. CIFA is much faster in estimating multidimensional models, particularly with correlated dimensions. Overall, CIFA yields slightly more accurate parameter estimates, and FIML yields slightly more accurate standard errors. Yet, across most conditions, differences between methods are negligible. FIML is the best election in small sample sizes (200 observations). CIFA is the best election in larger samples (on computational grounds). Both methods failed in a number of conditions, most of which involved 200 observations, few indicators per dimension, highly skewed items, or low factor loadings. These conditions are to be avoided in applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.