Abstract

The inclusion of the governor droop and dead-band in dynamic models helps to reproduce the measured frequency response accurately and is a key aspect of model validation. Often, accurate and detailed turbine-governor information are not available for various units in an area control centre. The uncertainty in the droop also arise from the nonlinearity due to the governor valves. The droop and dead-band are required to tune the secondary frequency bias factors, and to determine the primary frequency reserve. Earlier research on droop estimation did not adequately take into account the effect of dead-band and other nonlinearities. In this paper, unscented Kalman filter is used in conjunction with continuously available measurements to estimate the governor droop and the dead-band width. The effectiveness of the approach is demonstrated through simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.