Abstract

In this paper, we propose and test a new iterative algorithm to simultaneously estimate the nonrigid motion vector fields and the emission images for a complete cardiac cycle in gated cardiac emission tomography. We model the myocardium as an elastic material whose motion does not generate large amounts of strain. As a result, our method is based on minimizing an objective function consisting of the negative logarithm of a maximum likelihood image reconstruction term, the standard biomechanical model of strain energy, and an image matching term that ensures a measure of agreement of intensities between frames. Simulations are obtained using data for the four-dimensional (4-D) NCAT phantom. The data models realistic noise levels in a typical gated myocardial perfusion SPECT study. We show that our simultaneous algorithm produces images with improved spatial resolution characteristics and noise properties compared with those obtained from postsmoothed 4-D maximum likelihood methods. The simulations also demonstrate improved motion estimates over motion estimation using independently reconstructed images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call