Abstract
In this paper, a complete framework for safe and efficient physical human-robot interaction (pHRI) is developed for robot by considering both issues of adaptation to the human partner and ensuring the motion constraints during the interaction. We consider the robot's learning of not only human motion intention, but also the human impedance. We employ radial basis function neural networks (RBFNNs) to estimate human motion intention in real time, and least square method is utilized in robot learning of human impedance. When robot has learned the impedance information about human, it can adjust its desired impedance parameters by a simple tuning law for operative compliance. An adaptive impedance control integrated with RBFNNs and full-state constraints is also proposed in our work. We employ RBFNNs to compensate for uncertainties in the dynamics model of robot and barrier Lyapunov functions are chosen to ensure that full-state constraints are not violated in pHRI. Results in simulations and experiments show the better performance of our proposed framework compared with traditional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.