Abstract

In this article, we investigate seemingly unrelated regression (SUR) models that allow the number of equations (N) to be large and comparable to the number of the observations in each equation (T). It is well known that conventional SUR estimators, for example, the feasible generalized least squares estimator from Zellner (1962) does not perform well in a high-dimensional setting. We propose a new feasible GLS estimator called the feasible graphical lasso (FGLasso) estimator. For a feasible implementation of the GLS estimator, we use the graphical lasso estimation of the precision matrix (the inverse of the covariance matrix of the equation system errors) assuming that the underlying unknown precision matrix is sparse. We show that under certain conditions, FGLasso converges uniformly to GLS even when T < N, and it shares the same asymptotic distribution with the efficient GLS estimator when We confirm these results through finite sample Monte-Carlo simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.