Abstract

Objective: To bridge the gap between laboratory-measured hemoglobin A1c (HbA1c) and continuous glucose monitoring (CGM)-derived time in target range (TIR), introducing TIR-driven estimated A1c (eA1c). Methods: Data from Protocol 1 (training data set) and Protocol 3 (testing data set) of the International Diabetes Closed-Loop Trial were used. Training data included 3 months of CGM recordings from 125 individuals with type 1 diabetes, and HbA1c at 3 months; testing data included 9 months of CGM recordings from 168 individuals, and HbA1c at 3, 6, and 9 months. Hemoglobin glycation was modeled by a first-order differential equation driven by TIR. Three model parameters were estimated in the training data set and fixed thereafter. A fourth parameter was estimated in the testing data set, to individualize the model by calibration with month 3 HbA1c. The accuracy of eA1c was assessed on months 6 and 9 HbA1c. Results: eA1c was tracked for each individual in the testing data set for 6 months after calibration. Mean absolute differences between HbA1c and eA1c 3- and 6-month postcalibration were 0.25% and 0.24%; Pearson's correlation coefficients were 0.93 and 0.93; percentages of eA1c within 10% from reference HbA1c were 97.6% and 96.3%, respectively. Conclusions: HbA1c and TIR are reflections of the same underlying process of glycemic fluctuation. Using a model individualized with one HbA1c measurement, TIR provides an accurate approximation of HbA1c for at least 6 months, reflecting blood glucose fluctuations and nonglycemic biological factors. Thus, eA1c is an intermediate metric that mathematically adjusts a CGM-based assessment of glycemic control to individual glycation rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call