Abstract

The quantum-behaved particle swarm optimization (QPSO) with Tikhonov regularization is used to solve the inverse heat conduction problem of estimating the time dependent heat transfer coefficient of a flat plate. The prior information about the functional form of the unknown is unavailable. The estimation is based on transient temperature measurements taken by the sensors imbedded in the plate, which are used in the least square model, minimized by QPSO. The detail of choosing the best regularization parameter by L-curve method is presented. Numerical experiments are performed to test the proposed method. Effects of the location and number of sensors are also investigated. Comparison with conjugate gradient method is given as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.