Abstract

Background: The assessment of the evolution or fall of the temperature distribution of all biological tissues, and particularly human in vivo tissues at adverse temperatures, is crucial because excess cold or heat can impair the human body and its physiological processes. However, this estimation through experimental investigations is challenging due to the ability of the human body to bear a wide range of unfavourable temperatures. Thus, it becomes imperative to frame a mathematical model and its solution for the measurement of the temperature distribution in the selected tissue. Method: The three-dimensional cylindrical bioheat equation, with initial and boundary conditions, was used to formulate a mathematical model. The model was solved using the variables-separable method. Results: The model was solved analytically, and MATLAB software was used for numerical calculations and a graphical representation. The model was applied to display the temperature distributions in human skin and in the head. Conclusions: The paper helps predict the distribution of heat and corresponding burn or cold injuries in human tissue well in advance of applying any thermal treatment such as targeted tumour hyperthermia or cryosurgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.