Abstract
The objective of the present study was to estimate genetic parameters for post-weaning traits in Kermani sheep. Traits were included 6-month weight (6MW), 9-month weight (9MW), yearling weight (YW), greasy fleece weight at first shearing (GFW) and greasy fleece weights at various shearings (RFW). Data and pedigree information used in this research were collected at Breeding Station of Kermani sheep during 1993–2004. Genetic parameters were estimated with single- and multi-traits analysis using restricted maximum likelihood (REML) procedures, under animal models. Log likelihood ratio test indicated the most appropriate model for 6MW and 9MW should included direct additive genetic effects as well as maternal permanent environmental effects. However the most appropriate model for YW and GFW had only the direct additive genetic effects. The effects of sex, age of dam and year of birth were significant on body weight traits ( P < 0.01). GFW was influenced significantly by sex and year of birth ( P < 0.01) but was not affected by age of dam ( P > 0.05). Type of birth was no significant effect on studied traits ( P > 0.05). Also, the age of lamb at weighing time was a significant influence on 6MW, 9MW and YW. Direct heritability estimates for 6MW, 9MW, YW and GFW were 0.32, 0.03, 0.15 and 0.15, respectively. Maternal permanent environmental estimates of 0.09 were obtained for 6MW and 9MW. Genetic correlation estimates between mentioned traits ranged from 0.51 to 0.99. Phenotypic correlations were generally lower than those of genetic correlation and varied from 0.05 to 0.79 for various traits. The environmental correlations estimates between GFW with growth traits were low, but between other traits were positive and high, ranged from 0.54 to 0.72. The value of repeatability estimated for greasy fleece weight was 0.22.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.