Abstract

A base of gas hydrate stability zone was established after coring and drilling under the National Gas Hydrate Program (NGHP) Expedition-01 in the Mahanadi basin. At two sites, logging-while-drilling log data, and, at one site, wireline log data, were acquired during the NGHP Expedition-01. Gas hydrate reservoirs modelling can be performed in two different ways. One way is isotropic (load bearing) and, on the other hand, anisotropic media (fracture filling with gas hydrate). Here, we have performed anisotropic modelling and estimated gas hydrate saturation using P-wave velocity, assuming an incidence angle of 75\(^{\circ }\) represents the vertical fracture. The estimated gas hydrate saturation at sites NGHP-01-08 and NGHP-01-09, assuming anisotropic media, reduces the estimate by half compared to the saturation estimation by assuming isotropic media. The saturation at site NGHP-01-19 estimated from the isotropic and anisotropic P-wave velocity models are more or less similar except in the zone (175–210 m) just above the bottom simulating reflector depth, and this zone shows similar reduction in saturation as estimated at sites NGHP-01-08 and NGHP-01-09. Observations show that average gas hydrate saturations are relatively low (up to 5% of the pore space). The saturation of a gas hydrate estimated from an isotropic P-wave model varies from 5% to 20%. However, the saturation estimated from the anisotropic P-wave model shows a variation up to 10% of the pore spaces at three sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call