Abstract
Fungi play important roles in forest ecosystems and understanding fungal diversity is crucial to address essential questions about species conservation and ecosystems management. Changes in fungal diversity can have severe impacts on ecosystem functionality. Unfortunately, little is known about fungal diversity in northern temperate and boreal forests, and we have yet to understand how abiotic variables shape fungal richness and composition. Our objectives were to make an overview of the fungal richness and the community composition in the region and identify their major abiotic drivers. We sampled 262 stands across the northern temperate and boreal Quebec forest located in the region of Abitibi-Témiscamingue, Mauricie, and Haute-Mauricie. At each site, we characterized fungal composition using Illumina sequencing, as well as several potential abiotic drivers (e.g., humus thickness, soil pH, vegetation cover, etc.). We tested effects of abiotic drivers on species richness using generalized linear models, while difference in fungal composition between stands was analyzed with permutational multivariate analysis of variance and beta-diversity partitioning analyses. Fungi from the order Agaricales, Helotiales, and Russulales were the most frequent and sites from the north of Abitibi-Témiscamingue showed the highest OTUs (Operational Taxonomic Unit) richness. Stand age and moss cover were the best predictors of fungal richness. On the other hand, the strongest drivers of fungal community structure were soil pH, average cumulative precipitation, and stand age, although much of community variance was left unexplained in our models. Overall, our regional metacommunity was characterized by high turnover rate, even when rare OTUs were removed. This may indicate strong environmental filtering by several unmeasured abiotic filters, or stronger than expected dispersal limitations in soil fungal communities. Our results show how difficult it can be to predict fungal community assembly even with high replication and efforts to include several biologically relevant explanatory variables.
Highlights
Fungi represents the most diverse groups on Earth after insects [1]
A global overview of the fungal diversity and richness was assessed across the northern temperate and boreal Quebec forests
It allowed to localize area with high fungal richness and identified abiotic predictors across the sampled region. This could be used as a tool to follow fungal richness through time and to anticipate future changes that could be damaging to forests
Summary
Fungi represents the most diverse groups on Earth after insects [1]. They are diverse in terms of shape, color, and lifestyle and they are distributed throughout the globe in all types of terrestrial and aquatic ecosystems, and even in extreme life conditions such as those prevailing in the Antarctic [2,3].They play pivotal roles in ecosystem functioning by modulating nutrient cycling, organic matter decomposition, carbon storage, and plant nutrition through the formation of mutualistic symbiosis [4,5,6,7].Several studies have shown that ecosystems functionality is altered when changes occur in soil fungal diversity [5,6] which is why they are used as a forest and soil health bioindicator [8,9]. Fungi represents the most diverse groups on Earth after insects [1] They are diverse in terms of shape, color, and lifestyle and they are distributed throughout the globe in all types of terrestrial and aquatic ecosystems, and even in extreme life conditions such as those prevailing in the Antarctic [2,3]. Fungal diversity can change because of time, climate, biota, topography, natural disturbance, or human caused perturbation and contamination [11,12,13,14]. For these reasons, there is interest in developing approaches to predict various facets of fungal diversity, and how it is likely to change over space and time in natural and managed ecosystems
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.