Abstract
This paper addresses the estimation of the frequency of a sinusoid from compressively sensed measurements. Normally in parameter estimation, measurements are assumed to contain the signal and additive white Gaussian noise (AWGN). Under the paradigm of compressive sensing (CS), the measurements no longer contain AWGN but correlated noise. Frequency estimation of a sinusoid from measurements obtained through CS using the A WGN assumption will be non-optimal. This paper provides near-optimal frequency estimates for a sinusoid obtained through CS. Estimation of frequency of a sinusoid from CS measurements is cast as a linear least squares problem. A near-optimal solution in closed-form is presented by applying generalized total least squares (GTLS) technique to avoid bias caused by the correlated noise. The accuracy of the closed-form solution is close to the theoretical bound as confirmed by simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.