Abstract

Population size estimation is performed for several reasons including disease surveillance and control, for example to design adequate control strategies such as vaccination programs or to estimate a vaccination campaign coverage. In this study, we aimed at investigating the possibility of using Unmanned Aerial Vehicles (UAV) to estimate the size of free-roaming domestic dog (FRDD) populations and compare the results with two regularly used methods for population estimations: foot-patrol transect survey and the human: dog ratio estimation. Three studies sites of one square kilometer were selected in Petén department, Guatemala. A door-to-door survey was conducted in which all available dogs were marked with a collar and owner were interviewed. The day after, UAV flight were performed twice during two consecutive days per study site. The UAV's camera was set to regularly take pictures and cover the entire surface of the selected areas. Simultaneously to the UAV's flight, a foot-patrol transect survey was performed and the number of collared and non-collared dogs were recorded. Data collected during the interviews and the number of dogs counted during the foot-patrol transects informed a capture-recapture (CR) model fit into a Bayesian inferential framework to estimate the dog population size, which was found to be 78, 259, and 413 in the three study sites. The difference of the CR model estimates compared to previously available dog census count (110 and 289) can be explained by the fact that the study population addressed by the different methods differs. The human: dog ratio covered the same study population as the dog census and tended to underestimate the FRDD population size (97 and 161). Under the conditions within this study, the total number of dogs identified on the UAV pictures was 11, 96, and 71 for the three regions (compared to the total number of dogs counted during the foot-patrol transects of 112, 354 and 211). In addition, the quality of the UAV pictures was not sufficient to assess the presence of a mark on the spotted dogs. Therefore, no CR model could be implemented to estimate the size of the FRDD using UAV. We discussed ways for improving the use of UAV for this purpose, such as flying at a lower altitude in study area wisely chosen. We also suggest to investigate the possibility of using infrared camera and automatic detection of the dogs to increase visibility of the dogs in the pictures and limit workload of finding them. Finally, we discuss the need of using models, such as spatial capture-recapture models to obtain reliable estimates of the FRDD population. This publication may provide helpful directions to design dog population size estimation methods using UAV.

Highlights

  • Estimating the size of domestic and wild animal populations has been used in diverse research fields, such as for species monitoring and conservation [1,2] or disease surveillance and control [3]

  • Because of the poor quality of the Unmanned Aerial Vehicles (UAV) pictures, it was not possible to assess if a dog was marked or not

  • More dogs were observed during the foot-patrol transect walks than on the pictures taken by the UAV

Read more

Summary

Introduction

Estimating the size of domestic and wild animal populations has been used in diverse research fields, such as for species monitoring and conservation [1,2] or disease surveillance and control [3]. Population size estimation methods have been used to monitor biological diversity in space and time [4], estimate the abundance and conservation status of rare and endangered species such as whales or rare and elusive carnivores [5,6] or to design and conduct vaccination programs [7,8] and estimate vaccination campaign coverage for infectious diseases [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call