Abstract

Medical differential diagnosis is a method of identifying the presence of a particular entity (disease) within a set of multiple possible alternatives. The significant problem in dermatology and pathology is the differential diagnosis of malignant melanoma and other pigmented skin lesions, especially of dysplastic nevi. Malignant melanoma is the most malignant skin neoplasma, with increasing incidence in various parts of the world. It is hoped that the methods of quantitative pathology, i.e. morphometry, can help objectification of the diagnostic process, since early discovery of melanoma results in 10-year survival rate of 90%. The aim of the study was to use fractal dimension calculated from the perimeter-area relation of the cell nuclei as a tool for the differential diagnosis of pigmented skin lesions. We analyzed hemalaun-eosin stained pathohistological slides of pigmented skin lesions: intradermal naevi (n = 45), dysplastic naevi (n = 47), and malignant melanoma (n = 50). It was found that fractal dimension of malignant melanoma cell nuclei differs significantly from the intradermal and dysplastic naevi (p ≤ 0. 001, Steel-Dwass Multiple Comparison Test). Additionaly, ROC analysis confirmed the value of fractal dimension based evaluation. It is suggested that the estimation of fractal dimension from the perimeter-area relation of the cell nuclei may be a potentially useful morphometric parameter in the medical differential diagnosis of pigmented skin lesions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call