Abstract
To promote the application of domestic high-resolution satellite data in large-scale carbon storage estimation and measurement, a total of 206 high-resolution remote sensing images covering Hunan Province were used as the data source, and the estimated minimum unit was fixed as a 0.06 hm2 square composed of multiple pixels. Through the establishment and purification of the interpretation marks, in the extraction of forest information, the pixel-based method and object-oriented classification method were used to compare. In the estimation of carbon storage of arbor forest, the robust estimate, partial least squares method and k-NN estimate were used to compare. Finally, we estimated forest carbon storage in Hunan Province and generated the distribution map of carbon density levels. The results showed that the interpretation mark based on the automatic extraction of plots could increase the extraction accuracy of arbor forest after purification. For the estimation of forest carbon storage at large-scale, the k-NN algorithm embodied a large advantage in forest information extraction and arbor forest carbon storage modeling. The average classification accuracy of the 206 scene images was 76.8%, the average RMSE was 8.95 t·hm-2, the average RRMSE was 19.1%, and the total carbon stock in Hunan Province was 22.28 Mt. The results provided effective reference for the estimation and measurement of forest carbon storage at the provincial and national scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Ying yong sheng tai xue bao = The journal of applied ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.