Abstract

A two-level model (TLM) is introduced and investigated for the estimation of forest height and canopy density from a single ground-corrected InSAR complex correlation coefficient. The TLM models forest as two scattering levels, namely, ground and vegetation, separated by a distance Δh and with area-weighted backscatter ratio μ. The model is evaluated using eight VV-polarized bistatic-interferometric TanDEM-X image pairs acquired in the summers of 2011, 2012, and 2013 over the managed hemi-boreal test site Remningstorp, which is situated in southern Sweden. Ground phase is removed using a highresolution digital terrain model. Inverted TLM parameters for thirty-two 0.5-ha plots of four different types (regular plots, sparse plots, seed trees, and clear-cuts) are studied against reference lidar data. It is concluded that the level distance Δh can be used as an estimate of the 50th percentile forest height estimated from lidar (for regular plots: r > 0.95 and root-mean-square difference (σ) <; 10%, or 1.8 m). Moreover, the uncorrected area fill factor n0 = 1/(1 + μ) can be used as an estimate of the vegetation ratio, which is a canopy density estimate defined as the fraction of lidar returns coming from the canopy to all lidar returns (for regular plots: r > 0.59 and σ ≈ 10%, or 0.07).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.