Abstract

Accurate characterization of variability and trends in forest biomass at local to national scales is required for accounting of global carbon sources and sinks and monitoring their dynamics. Here we present a new remote sensing based approach for estimating live forest aboveground biomass (AGB) based on a simple parametric model that combines high-resolution estimates of leaf area index (LAI) from the Landsat Thematic Mapper sensor and canopy maximum height from the Geoscience Laser Altimeter System (GLAS) sensor onboard ICESat, the Ice, Cloud, and land Elevation Satellite. We tested our approach with a preliminary uncertainty assessment over the forested areas of California spanning a broad range of climatic and land-use conditions and find our AGB estimates to be comparable to estimates of AGB from inventory records and other available satellite-estimated AGB maps at aggregated scales. Our study offers a high-resolution approach to map forest aboveground biomass at regional-to-continental scales and assess sources of uncertainties in the estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.