Abstract
Zero-velocity assumption has been used for estimation of foot trajectory and stride length during running from the data of foot-mounted inertial measurement units (IMUs). Although the assumption provides a reasonable initialization for foot trajectory and stride length estimation, the other source of errors related to the IMU’s orientation still remains. The purpose of this study was to develop an improved foot trajectory and stride length estimation method for the level ground running based on the displacement of the foot. Seventy-nine runners performed running trials at 5 different paces and their running motions were captured using a motion capture system. The accelerations and angular velocities of left and right feet were measured with two IMUs mounted on the dorsum of each foot. In this study, foot trajectory and stride length were estimated using zero-velocity assumption with IMU data, and the orientation of IMU was estimated to calculate the mediolateral and vertical distance of the foot between two consecutive midstance events. Calculated foot trajectory and stride length were compared with motion capture data. The results show that the method used in this study can provide accurate estimation of foot trajectory and stride length for level ground running across a range of running speeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.