Abstract

Uniformly distributed uncertainty exists in industrial process; additive error introduced by quantization is an example. To be able to handle additive uniform and Gaussian measurement uncertainty simultaneously in system identification, the Flat‐topped Gaussian distribution is considered in this paper as an alternative to the Gaussian distribution. To incorporate this type of uncertainty in the maximum likelihood estimation framework, the explicit form of its density function is of necessity. This work proposes an approach for obtaining both the functional structure and corresponding parameter estimation of Flat‐topped Gaussian distribution by a moment fitting strategy. The performance of the proposed approximation function is verified by comparison to the Flat‐topped Gaussian distributed random variable with different Gaussian and uniform components. Results of numerical simulations and industrial applications in system identification are presented to verify the effectiveness of the Flat‐topped Gaussian distribution for noise distribution in handling additional uniform uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.