Abstract

SUMMARYContrast enhanced computer tomography (CT) imaging of articular cartilage has been proposed for diagnostics of cartilage degeneration, that is, osteoarthritis. Previous studies also indicate that acute cartilage damage can be detected by measuring diffusion of contrast agent into cartilage using CT. However, currently, there is no reliable method to measure spatial diffusion rates within cartilage tissue, and only average bulk values have been reported. In this paper, we develop a method to determine depthwise diffusivity of contrast agents in cartilage tissue using contrast enhanced CT. The triphasic mechano‐electrochemical theory of cartilage is modified to include diffusion of contrast agents. By applying statistical inversion theory and Bayesian approximation error approach, the method allows us to estimate a fixed charge density distribution in the cartilage tissue, an important determinant for mechanical competence of articular cartilage. The method is tested by using a one‐dimensional simulation study. Preliminary tests with experimental data on diffusion of anionic iodine contrast agent in bovine articular cartilage indicate that the method can provide realistic estimates for depth dependent fixed charge density. Thereby, the present study can improve our understanding on the feasibility of contrast enhanced CT for cartilage diagnostics. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call