Abstract

It may sometimes be clear from background knowledge that a population under investigation proportionally consists of a known number of subpopulations, whose distributions belong to the same, yet unknown, family. While a parametric family is commonly used in practice, one can also consider some nonparametric families to avoid distributional misspecification. In this article, we propose a solution using a mixture-based nonparametric family for the component distribution in a finite mixture model as opposed to some recent research that utilizes a kernel-based approach. In particular, we present a semiparametric maximum likelihood estimation procedure for the model parameters and tackle the bandwidth parameter selection problem via some popular means for model selection. Empirical comparisons through simulation studies and three real data sets suggest that estimators based on our mixture-based approach are more efficient than those based on the kernel-based approach, in terms of both parameter estimation and overall density estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.