Abstract

AbstractRainfall erosivity impacts all stages of hillslope erosion processes and is an important factor (the ‘R factor’) in the Revised Universal Soil Loss Equation. It is estimated as the average annual value of the sum of all erosive events (EI30) over a period of many years. For each storm event, the EI30 value is the product of storm energy, E in MJ ha−1, and peak 30‐min rainfall intensity (I30, mm hr−1). Previous studies often focused on estimation of the R factor for prediction of mean annual or long‐term soil losses. However, many applications require EI30 values at much higher temporal resolution, such as postfire soil erosion monitoring, which requires a time step at storm events or on a daily basis. In this study, we explored the use of radar rainfall data to estimate the storm event‐based EI30 after a severe wildfire in Warrumbungle National Park in eastern Australia. The radar‐derived rainfall data were calibrated against 12 tipping bucket rain gauges across an area of 239 km2 and subsequently used to produce a time series of rainfall erosivity maps at daily intervals since the wildfire in January 2013. The radar‐derived daily rainfall showed good agreement with the gauge measurements (R2 > 0.70, Ec = 0.66). This study reveals great variation in EI30 values ranging from near zero to 826.76 MJ·mm·ha−1·hr−1 for a single storm event. We conclude that weather radar rainfall data can be used to derive timely EI30 and erosion information for fire incident management and erosion control. The methodology developed in this study is generic and thus readily applicable to other areas where weather radar data are available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call