Abstract

Sixty-five electron-transfer reactions including 27 new 0, +1 couples have been added to our data set of cross-reactions between 0 and +1 couples, bringing it to 206 reactions involving 72 couples that have been studied by stopped-flow kinetics in acetonitrile containing supporting electrolyte at 25 degrees C, formal potentials determined by cyclic voltammetry, and analyzed using Marcus cross-rate theory. Perhaps surprisingly, a least-squares analysis demonstrates that intrinsic rate constants exist that predict the cross-rate constants to within a factor of 2 of the observed ones for 93% of the reactions studied, and only three of the reactions have a cross-rate constant that lies outside of the factor of 3, that corresponds to a factor of 10 uncertainty in the rate constant for an unknown couple. Many triarylamines, which have very high intrinsic reactivity, are included among the newly studied couples. The enthalpy contribution to the Marcus reorganization energy, lambda'v, has been calculated for 46 of the couples studied, at the (U)B3LYP/6-31+G (or for the larger and lower barrier compounds, at the less time-consuming (U)B3LYP/6-31G) level. In combination with a modified Levich and Dogodnadze treatment that assumes that the rate constant is proportional to (KeHab2/lambda1/2) exp[-DeltaG/RT], this allows estimation of the electronic coupling (Hab) at the transition state for intermolecular electron transfer, (more properly H'ab, the product of the square root of the encounter complex formation constant times Hab) for these couples. Although the principal factor affecting intermolecular electron-transfer rate constants is clearly lambda, H'ab effects are easily detectable, and the dynamic range in our estimates of them is over a factor of 600.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.