Abstract

Passive seismic tomography, in which the event locations and the velocity model are inferred simultaneously, is seldom used to process microseismic surveys acquired in the oil and gas industry. We discuss advantages of applying tomographic ideas to typical microseismic data recorded in a single, nearly vertical well to monitor hydraulic stimulation of a shale-gas reservoir. Microseismic events are conventionally located in the energy-industry applications using a velocity model derived from sonic logs and perforation shots. Instead of fixing the model, as is normally done, we alter it while locating the events. This added flexibility not only makes it possible to accurately predict traveltimes of the recorded P- and S-waves, but also provides a convincing evidence for anisotropy of the examined shale formation. While we find that velocity heterogeneity does not need to be introduced to explain the data acquired at each stage of hydraulic fracturing, the obtained models are suggestive of possible time-lapse changes in the anisotropy parameters that characterize the stimulated reservoir volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.