Abstract

Zoonotic diseases spread through pathogens-infected animal carriers. In the case of Ebola Virus Disease (EVD), evidence supports that the main carriers are fruit bats and non-human primates. Further, EVD spread is a multi-factorial problem that depends on sociodemographic and economic (SDE) factors. Here we inquire into this phenomenon and aim at determining, quantitatively, the Ebola spillover infection exposure map and try to link it to SDE factors. To that end, we designed and conducted a survey in Sierra Leone and implement a pipeline to analyze data using regression and machine learning techniques. Our methodology is able (1) to identify the features that are best predictors of an individual's tendency to partake in behaviors that can expose them to Ebola infection, (2) to develop a predictive model about the spillover risk statistics that can be calibrated for different regions and future times, and (3) to compute a spillover exposure map for Sierra Leone. Our results and conclusions are relevant to identify the regions in Sierra Leone at risk of EVD spillover and, consequently, to design and implement policies for an effective deployment of resources (e.g., drug supplies) and other preventative measures (e.g., educational campaigns).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.