Abstract
Abstract Thermoacoustic instabilities have plagued the operation of gas turbine engines for years and significant research is being conducted in detecting and understanding them. In this paper, an output only identification technique is employed for a noise induced dynamical system representing combustion instability behavior. This approach is called the output only observer Kalman filter identification (O3KID) and its first step solves for least squares from a set of algebraic equations constructed from just the measured output. The least squares solution gives the Markov parameters (impulse response) and the output residuals. The subsequent step takes the Markov parameters or the residuals to solve for the system matrices using any deterministic subspace identification method. In using this direct noniterative two-step algorithm, it is possible to estimate the eigenmodes and damping coefficients from output measured data. To validate the algorithm, a system of independent harmonic oscillators, excited by random noise is used to generate surrogate data representing pressure oscillations in a combustor prior to an instability. The error in estimating the eigen frequencies and damping are <1%. This fast direct approach could be used to provide an early warning indicator in industrial gas turbines by tracking the rate of damping of dominant eigenmodes. Additionally, saving the state space parameters periodically can serve as a data-lean option to track changes of the dynamics and across a gas turbine fleet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.