Abstract
The consequences of the loss of the load-bearing capacity due to the corrosion of prestressing steel can be much more dangerous than in the case of reinforced concrete structures, since failure can occur quite rapidly and without warning. A very important issue, therefore, is to determine the factors affecting the durability of prestressed structures exposed to aggressive agents, especially chloride ions. The aim of this study was to verify the protective properties of concrete of prefabricated HC-type prestressed concrete slabs in order to evaluate the possibility of their application in the ceilings of multilevel garages. In this paper, the corrosion rate of rebar steel in HC-550 floor slabs at a width of 1200 mm was estimated with nondestructive electrochemical methods: linear polarization and impedance spectroscopy. The general and mechanical properties of concrete prepared according to a formula in a laboratory and analogous concrete cut directly from the analyzed floor slabs were also studied. The porosity of concrete from these slabs was determined using X-ray-computed tomography for pore-related characterization. The values of the diffusion coefficient of chloride ions determined in previous works and the previously proposed model for the overexposure of the durability of floor slabs in chloride-containing environments were used to determine the durability of these slabs. Based on the empirical correlations adopted from the literature presenting the relationship of durability/adhesion over time and the corrosion parameters studied, a safe service life was determined at the nominal class of concrete equal to Δtcor.red = 30.48 years. In addition, in the case of discontinuities in the concrete structure, there may be a dangerous reduction in the time of corrosion initiation and a subsequent reduction in service life due to the loss of the adhesion of strut strands for up to 10.68 years of service life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.