Abstract

Abstract Phasing and duration are two of the most important aspects of combustion in Spark Ignition (SI) engines. They impact efficiency, emissions, and overall engine performance. These aspects of combustion can be represented by the mass fraction burn (MFB) profile. Having an accurate mathematical model of the MFB profile leads to an ability to model the combustion process and, thus, properly model the overall engine in 1D engine simulation tools. The Wiebe function is widely used in engine simulation to estimate the MFB profile as a function of crankshaft position. In this work, for the purpose of validating a sub-process, the Wiebe function parameters were calculated using an analytical solution and a least squares method by fitting MFB locations, as determined from analysis of measured cylinder pressure, to both single and double-Wiebe functions. To determine the accuracy of the respective Wiebe function, a single-zone pressure model was applied to reconstruct the pressure trace. Once the pressure trace is recovered, the reconstructed pressure trace is then compared with the experimentally measured cylinder pressure trace. Results showed that the double-Wiebe function model fit better than the single-Wiebe function model. The root mean square error (RMSE) of the reconstructed pressure trace using the double-Wiebe estimation is 7.9 kPa. In comparison, the RMSEs of the reconstructed pressure traces using the single-Wiebe analytical solution and single-Wiebe least squares methods were 70.0 kPa and 75.9 kPa, respectively, demonstrating a significant improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.