Abstract

In the field of orthodontics, digital dental arch models are increasingly replacing plaster models in orthodontic diagnostics. This change in interface from physical plaster models to digital image-based models raises the question of how orthodontists interpret intra- and inter-arch relationships from an image on a screen. In particular, the issue of the accuracy of the distances estimated on numerical models is crucial since the estimation of distances is the basis of the therapeutic decision-making process. Studies have shown that distances were well estimated on plaster models, but no study has verified this point on numerical models. This is the question that our study addresses. The experimental protocol consisted of collecting estimates of measurements made by orthodontists using digital models. The reliability of these measurements was then assessed by comparing them to the actual physical distances. We asked 31 orthodontists (19 women and 12 men; an average age of 37 years) to generate 3D model-based measurements of seven different elements: mandibular congestion, the maxillary intermolar distance, Spee’s curve, 16/26 symmetry, the right canine class, overbite, and overjet. These values were then compared to the actual measurements calculated using Insignia® software (ORMCO Corporation: Brea, CA, USA), using single sample t-tests. This test makes it possible to compare a distance estimated by the participants with a reference value, which corresponds here to the real distance. The results indicate that, overall, the distance estimates made on the 3D models differ significantly from the actual distances measured using the Insignia® software. This was particularly so for mandibular crowding (test value = 0; t (30) = 10.74; p ≤ 0.01), test value = 1; t (30) = 6.23; p ≤ 0.01). Although no study has focused on distance estimation on numerical models in the field of orthodontics, our results agree with the conclusions of studies showing that distances are not estimated in the same way in real environments and virtual environments. Additional studies will make it possible to identify more clearly the parameters (individual factors, equipment, etc.), which make it possible to improve the estimation of distances in the practice of orthodontics. In any case, these studies are necessary to improve the training of future practitioners in the use of virtual models for decision-making and to support them in the digital transition.

Highlights

  • In the medical field of orthodontics, distance estimation is at the center of the diagnosis and therapeutic follow-up of patients

  • For the variables whose estimates were significantly different from the real distance, we checked whether this difference between the estimates and the real value was greater than 1 cm

  • The relevant elements for this discussion are the difference in the estimation of distances between virtual and real models, the way in which our results can be discussed in the light of the work on the estimation of distances in virtual environments, and the perspectives of this study as part of further investigations

Read more

Summary

Introduction

VR was initially considered to be a new gaming technology [3]. It has, proven to be useful in many areas such as commerce, education, the military, and architecture, among others. Medicine is one of the most important areas of application of virtual reality [4], for example, for diagnosis or therapeutic planning. Advances in medical imaging and advances in computing power have made simulated images much more realistic and much faster to generate, allowing the reconstruction of three-dimensional anatomical entities and offering practitioners the possibility to interact directly with this imagery [4]

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call