Abstract

Burr type X distribution is one of the members of the Burr family which was originally derived by Burr (1942) and can be used quite effectively in modelling strength data and also general lifetime data. In this article, we consider efficient estimation of the probability density function (PDF) and cumulative distribution function (CDF) of Burr X distribution. Eight different estimation methods namely maximum likelihood estimation, uniformly minimum variance unbiased estimation, least square estimation, weighted least square estimation, percentile estimation, maximum product estimation, Cremer-von-Mises estimation and Anderson-Darling estimation are considered. Analytic expressions for bias and mean squared error are derived. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation for both small and large samples. Finally, a real data set has been analyzed for illustrative purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.