Abstract

Monitoring and nowcasting of urban air temperatures are of high interest for prediction of heat stress in cities. Routine observation is so far limited by the complex coupling between atmosphere and land surface in urban areas, which makes estimation more difficult. In this study, we have investigated the capability of multitemporal land surface temperatures (LSTs) from the geostationary Spinning Enhanced Visible Infra-Red Imager instrument for estimation of urban air temperatures. The results are very promising with root-mean-square errors (RMSEs) of 1.5-1.8 K for six stations in Hamburg and explained variances of 97%-98%. Both the annual and diurnal cycles were well represented by the empirical models and the use of multitemporal data substantially increased the model performance. Further, the model was run in a forecast mode without actual LST information. Here, the best predictors reached RMSEs of 1.9-2.4 K and R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> of 95%-97% for a 2-h forecast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.