Abstract

This paper demonstrates the feasibility of using the penalty function method to estimate parameters that are subject to a set of functional constraints in covariance structure analysis. Both types of inequality and equality constraints are studied. The approaches of maximum likelihood and generalized least squares estimation are considered. A modified Scoring algorithm and a modified Gauss-Newton algorithm are implemented to produce the appropriate constrained estimates. The methodology is illustrated by its applications to Heywood cases in confirmatory factor analysis, quasi-Weiner simplex model, and multitrait-multimethod matrix analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.