Abstract

Estimation of the direct effect of an exposure on an outcome requires adjustment for confounders of the exposure–outcome and mediator–outcome relationships. When some of the latter confounders have been affected by the exposure, then standard regression adjustment is prone to possibly severe bias. The use of inverse probability weighting under so-called marginal structural models has recently been suggested as a solution in the psychological literature. In this article, we show how progress can alternatively be made via G-estimation. We show that this estimation method can be easily embedded within the structural equation modeling framework and could in particular be used for estimating direct effects in the presence of latent variables. Moreover, by avoiding inverse probability weighting, it accommodates the typical problem of unstable weights in the alternative estimation approaches based on marginal structural models. We illustrate the approach both by simulations and by the analysis of a longitudinal study in individiduals who ended a romantic relationship. In this example we explore whether the effect of attachment anxiety during the relationship on mental distress 2 years after the breakup is mediated by rumination or not.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.