Abstract

Surface electromyographic (EMG) signals have often been used in estimating upper and lower limb dynamics and kinematics for the purpose of controlling robotic devices such as robot prosthesis and finger exoskeletons. However, in estimating multiple and a high number of degrees-of-freedom (DOF) kinematics from EMG, output DOFs are usually estimated independently. In this study, we estimate finger joint kinematics from EMG signals using a multi-output convolved Gaussian Process (Multi-output Full GP) that considers dependencies between outputs. We show that estimation of finger joints from muscle activation inputs can be improved by using a regression model that considers inherent coupling or correlation within the hand and finger joints. We also provide a comparison of estimation performance between different regression methods, such as Artificial Neural Networks (ANN) which is used by many of the related studies. We show that using a multi-output GP gives improved estimation compared to multi-output ANN and even dedicated or independent regression models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.