Abstract

This study introduces a novel approach to estimate tail dependence in financial contagion using mixture copulas. Addressing the challenges of weight parameter estimation in conventional models, we propose a Bayesian model averaging method to determine optimal copula weights. Through both simulations and empirical studies, the proposed method demonstrates improved robustness and accuracy, particularly when handling extreme weight scenarios. These advancements offer more reliable measurements of financial contagion, contributing to enhanced risk management and policy-making in interconnected financial markets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.