Abstract
PurposeBuilding cost is an important part of construction projects, and its correct estimation has important guiding significance for the follow-up decision-making of construction units.Design/methodology/approachThis study focused on the application of back-propagation (BP) neural network in the estimation of building cost. First, the influencing factors of building cost were analyzed. Six factors were selected as input of the estimation model. Then, a BP neural network estimation model was established and trained by ten samples.FindingsAccording to the experimental results, it was found that the estimation model converged at about 85 times; compared with radial basis function (RBF), the estimation accuracy of the model was higher, and the average error was 5.54 per cent, showing a good reliability in cost estimation.Originality/valueThe results of this study provide a reliable basis for investment decision-making in the construction industry and also contribute to the further application of BP neural network in cost estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.