Abstract
We address the problem of estimating an unknown parameter vector x in a linear model y=Cx+v subject to the a priori information that the true parameter vector x belongs to a known convex polytope X. The proposed estimator has the parametrized structure of the maximum a posteriori probability (MAP) estimator with prior Gaussian distribution, whose mean and covariance parameters are suitably designed via a linear matrix inequality approach so as to guarantee, for any xisinX, an improvement of the mean-squared error (MSE) matrix over the least-squares (LS) estimator. It is shown that this approach outperforms existing superefficient estimators for constrained parameters based on different parametrized structures and/or shapes of the parameter membership region X
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.