Abstract
The insufficient number of available samples can cause inaccurate estimation of the clutter covariance matrix (CCM) in space-time adaptive processing (STAP), resulting in degraded clutter suppression performance. To tackle this problem, a CCM estimation approach based on knowledge-aided (KA) and geometric methods is proposed in this paper. A combination of environmental as well as structural (Persymmetric or Symmetric structure) knowledge information is utilized to model the covariance matrix of each sample as a knowledge-aided Hermitian positive definite (KA-HPD) covariance matrix. The estimation problem is introduced into the Riemannian manifold composed of the KA-HPD covariance matrices, and the geometric method is used for nonlinear processing. Based on the Kullback-Leibler (KL) divergence and the KL mean, the final estimated CCM is designed as a weighted combination of each KA-HPD covariance matrix. Experiment results show that the two designed structural covariance matrix estimators possess superior clutter suppression performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.