Abstract

The study aims to assess variations in spatio-temporal characteristics of water quality parameters from three tropical estuaries, namely Muri-Ganga, Saptamukhi, and Hooghly, in the western portion of the Indian Sundarbans. Reliable retrieval of near-surface concentration of water quality parameters such as Chlorophyll-a, SST & TSM from diverse aquatic ecosystems with broad ranges of tropical requirements has always remained a complex issue. In this study, application of Case 2 Regional Colour Correction (C2RCC) processor has been tested for its accuracy across different bio-optical regimes in both inland and coastal waters. Satellite images for the same period were also collected and analysed using the C2RCC processing sequence to retrieve parameters like the depth of water, surface reflectance, water temperature, inherent optical properties (IOPs), chlorophyll-a, salinity, total suspended matter (TSM), etc., using the SNAP software. In situ sampling from specific locations within these estuaries and water quality analysis were conducted for the period 2017–2019. The OLCI retrieved datasets were compared and corroborated with field survey datasets. It was observed that the highest amount of TSM was recorded at Diamond Harbour during the 2018 pre-monsoon season (301.40 mg/L field-based value and 308.54 mg/L estimated value). Similarly, chlorophyll-a had higher concentrations throughout the monsoon season (3.03 mg m−3, (field survey), and 2.96 mg m−3, (estimated) at Fraserganj and Sagar south points. A very good correlation was observed for all seasons for Chl-a (r = 0.829) and TSM (r = 0.924) between the OLCI data and in situ measurements. Higher correlation and significant ‘r’ values highlight the importance of having both field-based as well as remotely-sensed information in understanding any dynamic system in a sustained manner. Results also confirm that the water quality model using OLCI Chl-a and TSM products outperforms conventional techniques. The study demonstrates the efficacy of using Sentinel 3 OCLI data for shallow marine and estuarine remote sensing applications, especially for monitoring TSM and Chl-a concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call