Abstract
Carbon footprint is a term used to describe the total amount of carbon dioxide and other green house gas (GHG) emissions for which an individual/process/organization/activity is responsible. The challenge of global climate change has motivated state transportation agencies involved in the construction and maintenance of transportation infrastructure to investigate strategies that reduce the life cycle greenhouse gas (GHG) emissions associated with the construction and rehabilitation of highway infrastructure. The road sector is coming under pressure to review current practice and the potential to reduce carbon emissions. To reduce GHG emission, different approaches are adopted for road construction and maintenance such as Warm Mix and Cold Mix Technologies. Warm mix asphalt is produced at temperatures 20 to 40oC lower than hot mix asphalt (HMA). Cold Mix Asphalt is produced and paved at ambient temperature using bitumen emulsion. The immediate benefit of producing and placing asphalt mixes at a lower temperature is the reduction in energy consumption, greenhouse gas emissions, fumes, and odours generated at the plant and the paving site. The life cycle approach has been accepted as a robust method of measuring carbon footprint. Tools and data-sets have been developed to facilitate the measurement. Among them is the Calculator for Harmonised Assessment and Normalisation of Greenhouse-gas Emissions for Roads (CHANGER) developed by International Road Federation (IRF). This paper outlines the common methodology of road carbon foot printing, application of results in sustainable construction assessment schemes and resources available to undertake such analysis. Case studies of using CHANGER are provided in India for different technologies. The CO2 output of these projects is compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.