Abstract
Abstract. The bushfires that occurred in Australia in late 2019 and early 2020 were unprecedented in terms of their scale, intensity, and impacts. Using nitrogen dioxide (NO2) and carbon monoxide (CO) data measured by the Tropospheric Monitoring Instrument (TROPOMI), together with fire counts and fire radiative power (FRP) from MODIS, we analyzed the temporal and spatial variation of NO2 and CO column densities over three selected areas covering savanna and temperate forest vegetation. The ΔNO2/ΔCO emission ratio and emission factor were also estimated. The ΔNO2/ΔCO emission ratio was found to be 1.57 ± 1.71 for temperate forest fire and ranged from 2.0 ± 2.36 to 2.6 ± 1.92 for savanna fire. For savanna and temperate forest fires, satellite-derived NOx emission factors were found to be 1.48 and 2.39 g kg−1, respectively, whereas the CO emission factors are 107.39 and 126.32 g kg−1, respectively. This study demonstrates that the large-scale emission ratio from the TROPOMI satellite for different biomass burnings can help identify the relative contribution of smoldering and flaming activities in a large region and their impacts on the regional atmospheric composition and air quality. This method can be applied to study the emissions from other large fires, or even the burning of fossil fuel in megacities, and their impact on air quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.