Abstract
The aim of this work is to estimate the biological effect of targeted radionuclide therapy using Cu-64, which is a well-known Auger electron emitter. To do so, we evaluate the absorbed dose of emitted particles from Cu-64 using the Geant4-DNA Monte Carlo simulation toolkit. The contribution of beta particles to the absorbed dose is higher than that of Auger electrons. The simulation result agrees with experimental ones evaluated using coumarin-3-carboxylic acid chemical dosimeter. The simulation result is also in good agreement with previous ones obtained using fluorescent nuclear track detector. From the results of present simulation (i.e., absorbed dose estimation) and previous biological experiments using two cell lines (i.e., evaluation of survival curves), we have estimated the relative biological effectiveness (RBE) of Cu-64 emitted particles on CHO wild-type cells and xrs5 cells. The RBE of xrs5 cells exposed to Cu-64 is almost equivalent to that with gamma rays and protons and C ions. This result indicates that the radiosensitivity of xrs5 cells is independent of LET. In comparison to this, the RBE on CHO wild-type cells exposed to Cu-64 is significantly higher than gamma rays and almost equivalent to that irradiated with C ions with a linear energy transfer of 70 keV/μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.