Abstract

An affinity capillary electrophoresis method was developed to determine a binding constant between a peptide nucleic acid (PNA) and a hairpin-structured DNA. A diblock copolymer composed of PNA and polyethylene glycol (PEG) was synthesized as a novel affinity probe. The base sequence of the probe's PNA segment was complementary to a hairpin-structured region of a 60-base single-stranded DNA (ssDNA). Upon applying a voltage, the DNA hairpin migrated slowly compared to a random sequence ssDNA in the presence of the PNA probe. This retardation was induced by strand invasion of the PNA into the DNA hairpin to form a hybridized complex, where the PEG segment received a large amount of hydrodynamic friction during electrophoresis. The binding constant between the PNA probe and the DNA hairpin was easily determined by mobility analysis. This simple method would be potentially beneficial in studying binding behaviors of various artificial nucleotides to natural DNA or RNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.