Abstract

Several properties of transition metal nitrides (TMN) that make them useful in many applications are closely related to the state of their surfaces. Meanwhile, high melting points which characterize these materials make the determination of their surface energies experimentally difficult. This work presents a computational intelligence technique using support vector regression (SVR) to establish, for the first time, a complete database of average surface energies of all members of TMN series. SVR-based model was developed by training and testing SVR with best parameters obtained through test-set–cross-validation technique using thirty-five experimental data of periodic metals. The developed SVR-based model was used to estimate average surface energies of 3d, 4d and 5d-TMN, and the obtained results agree well with the existing theoretical values. Simple and effective computational approach of the developed model together with its accurate estimation of average surface energies of all the members of TMN series contributes to the uniqueness of this developed model over the existing theoretical methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call