Abstract

This study presented a method to estimate areal mean rainfall (AMR) using a Biased Sentinel Hospital Based Area Disease Estimation (B-SHADE) model, together with biased rain gauge observations and Tropical Rainfall Measuring Mission (TRMM) data, for remote areas with a sparse and uneven distribution of rain gauges. Based on the B-SHADE model, the best linear unbiased estimation of AMR could be obtained. A case study was conducted for the Three-River Headwaters region in the Tibetan Plateau of China, and its performance was compared with traditional methods. The results indicated that B-SHADE obtained the least estimation biases, with a mean error and root mean square error of −0.63 and 3.48 mm, respectively. For the traditional methods including arithmetic average, Thiessen polygon, and ordinary kriging, the mean errors were 7.11, −1.43, and 2.89 mm, which were up to 1027.1%, 127.0%, and 358.3%, respectively, greater than for the B-SHADE model. The root mean square errors were 10.31, 4.02, and 6.27 mm, which were up to 196.1%, 15.5%, and 80.0%, respectively, higher than for the B-SHADE model. The proposed technique can be used to extend the AMR record to the presatellite observation period, when only the gauge data are available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.