Abstract

The most abundant serpentine mineral in subduction settings, antigorite has one of the highest water storage capacities and is involved in seismicity. Seismic wave velocities of antigorite are important for detecting and quantifying serpentinization within the mantle wedge and the subducting oceanic plate. At present, the elastic properties of antigorite at high pressures and temperatures are unclear. In this study, we have investigated pressure-volume-temperature (P-V-T) data and thermodynamic properties of antigorite using first-principles molecular dynamics (FPMD) simulations. Using these simulations results, we computed the relevant thermoelastic parameters and estimated compressional and shear wave velocities (vP and vS) of antigorite in subduction conditions. A simplified velocity model of antigorite with its coexisting mantle anhydrous phases was introduced to help us understand the potential effect of serpentinization on the seismic velocity of mantle rocks. Combined with seismic observations, we re-evaluated some velocity anomalies within forearc mantle wedges and established reliable serpentinization budgets. These results can provide preliminary evaluations and reliable constraints on serpentinization and water content in mantle rocks, which has important implications for understanding global plate dynamics and the deep water cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.