Abstract

In this paper, the point prediction of the Artificial Neural Network (ANN) for the suspended sediment load modeling was evaluated for the Lighvanchai River located in Iran, in monthly and daily scales. Since point prediction of ANN convey no information about the accuracy of prediction, so prediction intervals (PIs) were constructed by the Bootstrap method as a most frequently used technique for assessing the uncertainty of ANN. In this way, the accuracy of PIs was quantified by coverage and width criteria. The results showed that the ANN-based modeling in daily scale had better performance compared to that in monthly scale and Nash Sutcliff efficiency was 32% higher in daily scale compared to monthly. Moreover, the width and coverage of the constructed PIs in daily scale were 14% and 24%, lower and higher compared to that in monthly scale and the Bootstrap method could appropriately capture the target values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.