Abstract

We have revised classical micromechanics by accounting for the effect of interface to predict the effective anisotropic elastic properties of heterogeneous materials containing nano-inhomogeneities. In contrast to sharp interface between the matrix and inhomogeneity, we introduce the concept of interphase to account for the interfacial-stress effect at the nano-scale. The interphase’s constitutive properties are derived from atomistic simulations and then incorporated in a micromechanics-based interphase model to compute effective properties of nanocomposites. This scale transition approach bridges the gap between discrete atomic level interactions and continuum mechanics. An advantage of this approach is that it combines atomistic with continuum models that consider inhomogeneity and interphase morphology. It thereby enables us to account simultaneously for both the shape and the anisotropy of a nano-inhomogeneity and interphase at the continuum level when we compute material’s overall properties. In so doing, it frees us from making any assumptions about the interface characteristics between matrix and the nano-inhomogeneity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call