Abstract

This paper considers the problem of estimating signals consisting of one or more components of the form a(t)e/sup j/spl phi/(t/), where the amplitude and phase functions are represented by a linear parametric model. The Cramer-Rao bound (CRB) on the accuracy of estimating the phase and amplitude parameters is derived. By analyzing the CRB for the single-component case, if is shown that the estimation of the amplitude and the phase are decoupled. Numerical evaluation of the CRB provides further insight into the dependence of estimation accuracy on signal-to-noise ratio (SNR) and the frequency separation of the signal components. A maximum likelihood algorithm for estimating the phase and amplitude parameters is also presented. Its performance is illustrated by Monte-Carlo simulations, and its statistical efficiency is verified.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.